DARE UK

‘Virtual’ TREs

Technical Annex

Table of Contents

1. Section 1: Legal & GOVEINANCEcovveuueerineenniiriinsssisisssssesssssssssssssssssssssssssssssssssns 4
1.1. DARE UK: SNOWflake TRE CONLIracCtsccuciieuiiieeiieniirenncironirinnieieesiresserenseesnssssnssesnsssssnsessasssssssssnssssnnnes 4
1.2. OVEIrVIEW AIABIam ciuuuuiiiiuuiiiiiiiuiiiiiinniieiiisiieiismmsisiisssietiesmsetiessssestesssesesssssssesssssssssssssssssssssssssssssssees 4
1.3. Data protection and regulatory considerations..........ccceeeiiiiiniiiiiinniiiiieiiiniens s 5

2. Section 2 : Snowflake TRE Data design, architecture and tooling....................ccceuuueeen. 7
2.1. D F 1 TN o o o= L3N 7
2.2, [0 1 TR 1 1= T - 8
2.2.1. Sharing WIithin REEIONcccciiii ittt e e e e et e e s st e e e sttee e e asaeeesntaeeeassteeeennsaeeesnsaeeasnssseeeansaeesannenens 8
2.2.2. Sharing DETWEEN REZIONS ...uviiiiiiieeeitiiiee e ettt e e e e et te e e e e e e et baeeeeeeeas st taaeaaeeeeaasstaaeeaasessassabeeaaaeesansssensaeeesannes 8
D T U 4111 == T o T T IR PURN 8
D S NV o T=T o) D -1 - (PP PUPNt 8
2.3. Data Governance and CONEIO iiieeeiiiieeiiireece e s s rrnne e essrnne s seeassssseensssssennsssssennssssnennnns 9
0 T80 T Y o o1 o 1V YL PR 9
0 707 Vo 11T 9
0 TR TR - 1ol |11 1= SR 10
2.4. SNOWTIake Data TOOIScieeiieiiieciieic et ticcreeecrra e ere e sre e sensasensesensessansssnnsessasssensssensssnnnnns 10
0t R = VI I 120X T Y U 4 10
2.4.2. COLLABORATION ACCOUNES ..uuuuuieieieieieieieieies e se s e s e e e s e s e e s e e e e n e nannan 11
2.5. NaMING CONVENTIONS.....ccuuiiiieiiieiiiiiiiieiiieiiieietesirenesenessssssstnsssrsssssrssstessssssssssenssssnssssnssssnssssnnssses 11
2.6. Audit and ComMPliaNCe Data.......ccceeueiiiieeiriiieeieerreneeerrenneereenssesserasssssernsssssennsssseennsssssennssssssnnssssneen 12
D T T V=1 =Y - 1 - TSP UUPPNS 12
ST 0 - 1 I o o1 SR 14
2.7. =T e To T o 41 - 15
2.8. LI Y= 14T T 1 N 16

3. Section 3: ServiceNOW ProOCESSEeS........cc.ceeueeenirerirenireniirsiesssesesesesessssssnsssnsssasssssssnsssnns 17
3.1. SErVICENOW POrtalceuiiiiiiiiiiiiciiiiiri e sre e reeesencreneeesassstnsseseasssensssenssssnsssssnsesansesensessnsssnnnnes 17
3.2, CreatiNg @ TREiiiuiiiiiiiiiiiiiiciiiiniiieeeieiiesssssiessssstiesssssttrsssssssesssssssessssssssssssssssssssssssnsssssssnssssss 18
3.3. Add Consortium ENtities .c..cciueieeeiiieiiiiiciiiire ittt creesee s ecsneesensssnescsansessasssensssasssssessesensanen 19
3.4. Add Users (Collaboration and ENtity)......cccceiiiiiiiimmmniiiiiiiiiinemmniiiiiiiiieeienieersssssssssessesssssns 20
3.5. X T I8 2T o T T 0 1= | N 21
3.6. Create BUAEETSiivuuiiiiieiiiiiiiniiiiiiinieninssseiitessesiessssetiessssesiessssssissssssstrssssssessssssseessssssssssssssssnsssns 22
3.7. SErVICENOW FECOIUS VIBWiieiiieeiiiiniiiiaeiraniiieeiereeserensieenseesnnsrnssesnssessasssenssssssssssnsessnsessnssssnsssnnses 23
K I % O 0o Y o Ty o T [0 o T 2U=T o o TSP UUPPN 23

E UK Research H DRU K : ADR

and Innovation
Health Data Research UK

[v, HDRUK @3 4ok

Health Ciata Reseanch UK

K I8 A ol olo U oYl T ol o] o SO PP PUUPPUPPRR 25
0 TR - 10 e ==t 2= Tolo] e LU USSP 25
I A S U o ¢ Tole] o L PP UP PP 26
I A T - 1= o o U L -l o Tole] o KO PSP PUPPR 27
TR A ST ' q o 1Y [41T o = Yolo o SRR 27
Section 4: TRE Off-Snowflake Processing............ccceeeuueereveussisnneesesssssssssssssssssssssnnnes 29
4.1. OVEIVIBW ... ieuiiieniiieiireneerenniitneseresseteaseseassseessessnsesenssssnsssensessassssesssssssssensessnsessnnsssnnsesansessnsssensssannnns 29
4.2, Crick Snowflake Organisation........cccceeiiiiuuiiiiiiiiiiiiiiiiniiieiiess st tirssssesssssssssssssssss 30
4.3. AWUS SEEUP ouiiieiiiiiiiiiti ittt tre it ree e ree s sae s rae s rass s reassteessteassssassssassstassstasssssasstenssssssssranssransssen 31
4.3. 1. JSON OULPUL FrOM SEIVICENOW ...c..eviieieiiiieceiie e sttt e e ettt e e e ete e e ettt e e e ette e e eaeeeeesaaaeeaassseeesansaeessnsaeeeansseessanssesesnsnneaans 31
0 A -1 o o Yo = TN U g ot o T I ==Y SRS 31
4.3.3. Create and SETUP ACCOUNTSuuiiieiiee ettt ee e e eect et e e e e e e sttt e e e e e e eeetaataeeeeeseesastaaseaeeeaaasssssseaeeeesassaaneaaeessansrenns 33
4.3.4. New Experiment for Collaboration.............uuiiieiiiiiiies e e e e e e e e e e st e e e e e e e e s traareeaeeeeeanenees 37
L T T @ ¢ <) (T U L= OO PP PSP UOPPPPPPPTRORRPOE 38
44. Okta integration With SNOWFIAKe..........ccoeeeerieeeece et rrr e s rre e s s e e s s e ennnaass 40
4.5. Metadata ProCeSSINGccceeeuiiiireniiireieeierenenerrennsserennsssseeensssseenssssssenssssssennsssssnnsssssssnssssseensssssennnns 41
4.5.1. Data collected and AELAIIScceiiiuiiiiiieieee et st b e e s bt e e baeebe e snbeebeeen 41
T A Vol ol 10 o U 3= I =1 o] £ PSSS 41
4.5.3. Information SChEMAs table......ii i ittt ettt sab e sateenaee s 43
4.5.4. 0Organization data SNAriNG: ...t e e e e e e e e e e e e e — e e e e e e e e e a——aeeaeeeeeaartaaraaaeeananrraaees 44
4.5.5. Views in ORG_ADMIN DB ...ttt e et e aeaaaeaaaraeaaaaaaaaaeens 44
4.5.6. ADMIN_SCH.X_TFCI_SNOWFLAKE tDIESv.eeevveeeeee et eeeeeteeeeeteeeseeseeeeseseseeseseseesessesesessesesessesaesessesesseseenesaes 44
4.6. Update ServiceNow Records and Snowflake Metadata Tables........ccccueuiirreeniiirieniiirreeccerreeecc e, 44
4.7. ATCNIVE PrOCESS cevvuueiiiiiiiiiiirunniiiiiiniinirnsssesssiitiimiiemsssssisssimmmassssssssssstmermsssssssssssssssesssssssssssssssessssssssss 45
Section 5: Snowflake Single Sign-0n (§S0)eeuueeeeeeeeeeeeerenserenrserenrerennserenseesnnsssennes 47
5.1. OVEIVIEW .euuiiiiruniiiiiiesiiiireesiiiraassiisssssstirasssstrrasssstrrssssssmrssssssmmssssssrrssssssssssssssssssssssssssssssnrasssssnsassssss 47
5.2. IMPIEMENTALION...... et r e s re e e s s e nas e s s e ans e s senasssssensssssnensssssrenasssssnnnsssseennsssnennnns 47
5.2.1. Okta Application and Group NAMING CONVENTIONScccuuieieiuiiieeiieeeciieeeeciee e sre e e sre e e e s sere e e ssseeeeesreeeeensreeesnnnees 47
5.3. o T o 3N 47
5.3.1. Automated object creation diagramcceciiii et e et e et e e et e e e ar e e e nre e e e enreeesnaeeas 48
5.3.2. OVErvieW SSO FIOW DIGEIAMuuiiieieiiieeccieeeeittee e ettt e st e e e e ate e e e ateeeesataeeeassteeesssaeesnsseeeansseesanssseeasseeeeasseseansnnes 48
Section 6: Reporting Single Sign-On (SS0) and assignment....................ccceeeuueeeeenn... 49
6.1. OVEIVIEW ... ieuiiieniiiieiiieneieennttneseresseteasereassseessessnsesenssssnssssnssssassssesssssssssensessnsessnnsssnnsssnnsessnsssensssannnes 49
6.2. L8 0T ¢ (=T 0 T=T 1 & 1o o T 49
L3 2 B 1 o TU] o I 01 €Y= 1 =T U PSPPI 49
6.3. o T o LN 49
T 70 N [o1 =T o - | LU L= PSPPSR 49
T T 4 {=Y o o 1 I U LYY SO PPUPPRRP 49
6.4. Reporting SSO OVerview DIagramcccccciiiuiiiiinniinienniiiiimmiimsmsiesmissesissessmmesssssssesssssssasess 50
Section 7: Loading data into vTREs - Extract, Load, Transform (ELT) Tools................ 51
7.1. Performance Testing Of ELT t0O0IScccceiiiiiuiiiiiiniiiniiiiiiiiiiiiiiiiesieeisiessmiesssssesssssssasess 51
7.2. Loading files from a persistent storage source (via an internal stage):ccccevveeeniiciiiiinnnennneieiinnne 51
7.3. Loading files from a cloud file store (via an external Stage):ccivvieeeeniiiiiiiiiinreniiseiiniinneennnnenn. 52

| 2

[o, HDRUK @ aor

Health Ciata Reseanch UK

7.4. Loading files from Database clients (via bulk insert statements):......ccccccceeiiiiiiireennniciiniinniennn. 52
7.5. Manual Self-Serve Data Loading Optionsccciiuiiiiiiiuiiniiiiiiniiiiiinieieiessess 52
7.5.1. What is @n @XEEINAl ST Y ...uuuiiiiii e ettt e ee et e e e e e e e st b e e e e e e e ee s abaaaeeeaeees st aaeaeaeeeeeanasetaeeeaeeeannnrtanaaaaaan 52
7.5.2. What is @n iNTEINAI STAZE Y .. .uuiiiieee e ettt e et e e e e e e st e e e e e e e e e s bbeaeeeeeeesasbaataeeeeeeeanssntaeeeaeeeasansaeeaanaan 52
7.5.3. How may a user load data into a table via an internal Stage? ... 53
7.5.4. How may a user load data into a table via an external Stage?.......cccceevcveeeeciie e s 54
7.5.5. Are there any pre-built software options for loading data graphically?cceeeeiie e 55

e HDRUK @3 aor

Health Ciata Reseanch UK

1. Section 1: Legal & Governance

1.1. DARE UK: Snowflake TRE Contracts

For a typical academic collaborative research consortium use, the TRE collaboration environment would need the
following agreements:

A. To procure the platform and tools that will comprise the TRE collaboration environment (e.g. Snowflake
and other software or tools that connect to the Snowflake TRE):
e The companies’ respective terms and conditions of service
e Entered between the Crick and the company
e The terms of use of the platform will need to permit sharing access with designated third parties
(i.e. the external collaborators)

B. To give each participating institution access to the TRE collaboration:
The Crick’s TRE terms and conditions

One copy signed per institution
The terms would include, for example:
o anoverview of the key rules of the TRE
o an order form capturing information needed to configure the TRE
o the terms and conditions of TRE access, including terms of the third parties’ terms (from A
above) that need to be flowed down to all user institutions
The terms of use will be directed by the upstream service provider’s terms and conditions (in this
case Snowflake)

C. To govern the participating institutions collaborative research:
e Collaboration agreement
e One copy signed by all the participating institutions who wish to undertake research on the shared
data
i. Caninclude terms to ascent new parties to the agreement, if the original institutions wish
to expand their collaboration
e The form could be a long-form Brunswick collaboration agreement (which is well recognised
between UK universities). Terms regarding ownership or use of arising IP and publications may vary,
depending on what the collaboration.

D. Optional, if there are ‘upload only’ institutions who do not access any of the shared data (i.e. not
undertaking the research, just data providers):
e Data sharing agreement
e Shorter version of agreement (C)

1.2. Overview diagram

The elements in blue are designed to be standard for every agreement, leaving only the elements which have to
be unique to every collaboration in purple.

Eﬂ ucreere HDRUK ﬁagpnqp_

Health Ciata Reseanch UK

ration Agresment

(35 {a]

Agyeeimant Crick Terms of Service

lEdzasch Question

Ethical Approwals
Marmed Individuals

Data Dascripthon
Indlividual Roles and
Respensibdlities

Intell=ctual Property
Agresinenls

Buggel Information s Amoonaibilition as &

ik holder

nkernational Data Sharing
agimin Rales and
respormibilities

Lin&ilities

Figure 1.2.1: Schematic Representation of Legal Agreement structure

1.3. Data protection and regulatory considerations
Each of the above agreements needs to contain appropriate data protection and data governance terms.

Each participating institution should involve their Data Protection Officer (DPO) in reviewing the proposed
arrangement. Each institution is responsible for advising if the data set they propose to share is governed by specific
data protection or governance requirements, and ensuring prior to any sharing that such sharing is compliant with
all such requirements.

We drafted the agreements on the basis that each upload designated account is located to the region (country)
requested by the uploading institution (we’d expect the country their source study participants are located in, or if
not available on TRE regions list, a suitable alternative selected by the institution’s DPQ), and the collaboration
designated account is located in the EU, for example Dublin, Ireland.

Some of the aspects we covered in the above agreements were:

- Clearly stating restrictions on users, e.g., for this TRE, we included for example (not exhaustive list):
o Access and use the data for the research project only
o No uploading of HIPAA data (meaning patient, medical or other protected health information
regulated by HIPAA or any similar U.S. federal or state laws, rules or regulations) without prior Crick
approval (because under the TRE terms, TRE designated accounts need to be configured to hold
HIPAA data).

- Stating responsibility on each institution to ensure: data anonymisation or pseudonymisation, data
transformation (i.e. transforming format so that analysis can be performed), data screening and quality
control steps in accordance with a protocol.

- Including a standard for international data transfer, in this case the EU SCCs and UK Addendum, because if
any of the participating institutions are located ex-EU / UK, their looking at data is a transfer ex-EU/ UK)

- Aiming to keep the data protection wording similar across the agreements for quicker review by the
institutions DPO/ contract office.

Eﬂ ucremewen HDRUK -_f»?:unn

Health Ciata Reseanch UK

- Including a responsibility on each institution to remove all data from TRE at the end of the project (or early
termination). The plan will need to take into consideration the nature of the data and meeting legal and
regulatory requirements.

It would also be helpful to share, with the suite of agreements, a data flow diagram to assist the institutions’
contracts office / DPO to understand the TRE collaboration. An example is shown here:

International cancer patients COVID-19 vaccination (ICCY) consartium: Data flow map

This s prosaiun by cor b iedule gose fayaler, s, sopplsnmne e keation, cule shadanld o she oo

T

el e

Talling: Fgical i~
Barameters for
Lonsortium — cFiline o
i el e R e :) |
) il alats caplaie k)

* ¥ i ¥ 3 ¥
Onboarding consortia Each Cansartium High levels cheds anly Share, harmonise and Perform analysis Data remoual & archive
mernber: Dats manager = This |5 an exerclsa by the merpe data Within snowlluke TRE Diata redained at

Fstahdish clata uploads datasatie] Codsariiam slearirg Nata sharas defined collabaration accont consortia merbies
sumLeignly *+ Dty vemnplate L noaTmithae brebween upboud * Par protoval rneta- irsdicutes:
reguinerEns L cornpluted = (hatSars and rissing rlata aveounts and collaly arialysis * [ala Ut relaies o
= Nerlare i HIPAA = Basehinr * Beporl o consurta ancnunt = Rapret t roasartia ara participaat will e
data demographins memibers with nequest for = Care analysis graup membors takra back ko the
* Establsh = Gurmnimarlzed turthirs datag acouracy = tingl repartof data = 'repare report of prasiding] Irstituton’s
s lum immnunolegical = hequreflock raw data files completeness Findings foe dalir sorage
ik ship ulpuls far subsauent meargs * Consuilia rucmbers - publicative # Dty Ll dues ot
[ramed isees) = [Mara Contmller = * Draba Contielle - Iairt Cartrallees® = Consormia mambers = refata to identifiable
= Fstahlish TRF rales Cnranrtia membar Comsurtia ke = (I lacatinn = Duklin Inint Controllars* inmidcuals {rg trands
* iZreste IKE * Clowd location = = Clourd leeatian = country lurdess otherwise agmed = Eloud bocation - analysis) - each
aernunts conntry ot shudy of study partivipants ior mrating dat deterrrencd by crnsnetia membier cen
* Guidariez froen parlicipants =i o soeerrigity sovreignly Lake 2 oapy arel stare
Crick ITO far data recpireTRnts) requirsraents * Rerain all code for
updaad Ly L"‘-H...___ ':muum;:vm LE'M:“‘_:.'_ regeat anabysis ==}

Figure 1.3.1: Example Data Flow Diagram to communicate process and roles for using the TRE in a collaboration

2.

and Innovation \
Health Ciata Reseanch UK

[E; UK Research H DRU |’< ' % ADR

Section 2 : Snowflake TRE Data design, architecture and tooling

2.1.

Data Process

The TRE collaboration environment is built around a standard process flow, see Figure 2.1.1.

1)

2)

3)

4)

5)

ELT tools (see section xxxx) enable data to be LOADED into the Database for each ENTITY account. This
loading activity is only done by people holding the DATA LOADER role for that account.

Once Loaded the data can be PROCESSED ready for sharing to the collaboration account and
experimentation. This processing is only able to be done by people holding the DATA PROCESSING role.
Once prepared the data can be SHARED to a collaboration account. This sharing can only be done by

people holding the DATA SHARER role.

Entity Account Collaboration Account
& &
Aecountable [rage dara_ 305 | e T —
ENTITY: Sub Accaunt COLLABORATION: Sub Accourit
ol METADATA D
= Account_npame e = NomedfCollaboretion
- g x1 —_—
— :
—] e _schema
oL Compute ﬁ el
EEE <chccount |warshause) Distabaa
| namess @
Duata Loader Compute D& Drata Curatar
{warehouse] Duata Sharer el | EvpEGimETTES
Mlmc tHaRE EXFT1 "Wk
m I Databaso c"-"'"‘""'-i

Resaurce Diata Processor

Maanilos J Usar
s All participants share this one to
Al parmea nts get access to complete the collaboration
their own one of these objectives

2.1.1 Process Flow of Data within a Collaboration TRE

Once the data has been shared, then the data can be made available to the users within the
COLLABORATION account. To make this happen the data needs to be CURATED into sets in a Science
Database ready for use. This curating can only be done by people holding the DATA CURATOR role.
Granting access to experimentation areas is also done by the DATA CURATOR role, and so it is this role
that conforms to instructions coming from the collaboration steering committee.

The final EXPLOITATION stage is where the analysis of the combined data is done. This can only be done
by people holding the EXPERIMENTER role and done within a specific SCHEMA set up specifically for the
authorised experiment. This is where tools such as RStudio may be deployed and connected to the
datasets. This is where data created by the Collaboration will be stored (in SCIENCE database) and where

material for Journal publications will be based.

uowrr HDRUK @S aor

Health Ciata Reseanch UK

2.2. Data Sharing

2.2.1. Sharing within Region

Sharing of data means something very specific in Snowflake (see https://docs.snowflake.com/en/user-guide/data-
sharing-intro.html). It is only possible between Accounts in the same Snowflake Region.

A data share is where one team Account allows access (through a view) to another team Account. ltis like a
“grant”, and means the “grantee” is not in control of the data. A share can be made with very fine granularity
selecting only specific columns or rows of data from a single table or a combination of tables.

Only COLLABORATION accounts have the ability to consume a Shared database. Entity Accounts are set up to not
be able therefore to share data between themselves (as they cannot ingest the share).

The ACCOUNT can share three generic sources of data:

1. Sharing Data from <<Account_name>> DB: This is the structured and semi-structured data

2. Sharing S3 internal stage: This is the binary data files (such as images)

3. Sharing S3 External Stage: This is the binary data files (such as images) and any data they have already
stored in their own S3 bucket areas.

2.2.2. Sharing between Regions

If the Accounts are not in the same region then the data files need to be replicated. This means that the account
data is copied. Replication also maintains synch of the data so scheduled updates are made to keep the “copy”
identical. Once copied the data is no longer 100% controlled by the owning ACCOUNT. The removal of the
replication does means no updates to the data already shared occur, but the is no “remote delete” option.

Data Share replication: https://docs.snowflake.com/en/user-guide/data-share-replication.html

Replicating Databases: https://docs.snowflake.com/en/user-guide/database-replication-intro.html

2.2.3. Utilising a Share

Once a share is made the receiving account gets notification of the Share and the DATA CURATOR role can then
instantiate the shared database (and the shared tables, columns and rows). This is very simply done:
https://docs.snowflake.com/en/user-guide/data-share-consumers.html#

CREATE DATABASE <name> FROM SHARE <provider_account>.<share_name>

Once the database is created, then a view of that data is created within the SCIENCE_DB and then providing grant
access to the different EXPERIMENTER Roles using it is normal database administration.

2.2.4. Types of Data

The Snowflake platform supports all data types and can hold and enable querying of the data in JSON format.
Structured data and unstructured data are held in databases, or as external tables. ELT / ETL tools will map such
data into the snowflake type automatically, and database DDL SQL syntax can be deployed to set up and modify
table formats if or when specialist tailoring is needed.

[o, HDRUK @ aor

Health Ciata Reseanch UK

Image and other binary files are held in staging areas. Two options exist, 1) internal S3 AWS containers or ii)
External mounted S3 AWS containers. Both of these are provided for in the build of the Account. The difference
is that the Internal S3 stage is inherently enabled at account creation time. The external S3 needs to be
configured manually through support of the admin team.

Snowflake also provides the opportunity to define data types. And a variety of knowledge content is available to
support these features (a few are listed here):

e Data Types: https://docs.snowflake.com/en/sql-reference/intro-summary-data-types.html

e Semi-structured data : https://docs.snowflake.com/en/user-guide/semistructured-concepts.html like
JSON/XML/Parquet/ORC/AVRO

e Binary data: https://docs.snowflake.com/en/user-guide/binary.html (image files etc)

2.3. Data Governance and Control

Governance and control of the data is done in a variety of ways. No restrictions are placed on the types of data
held nor the table formats. Instead, the principles embedded in the collaboration agreement, and legal
regulations provide an operating framework.

The platform is governed through three key functions:

1) Approvals
2) Roles
3) Facilities

2.3.1. Approvals

No person can be created without an auditable approval trail replicated in two places - the workflow ServiceNow
platform component and in the logs held on the implementation template code and the snowflake platform.

No native snowflake capability is available to users to create other users or change passwords or set up resources.
The ACCOUNTABLE PERSON role is the authorisation, and can see the data held in the <<Account_name>>_ DB
and their accounts METADATA set so they can interrogate activity being done on their ACCOUNT. For
Collaboration Accounts the BOARD MEMBER role has equivalents.

2.3.2. Roles
The flow of data shown in Figure 2.1.1 is enabled through five different roles:
ENTITY ACCOUNT

1) DATA LOADER
2) DATA PROCESSOR
3) DATA SHARER

COLLABORATION ACCOUNT

4) DATA CURATOR
5) EXPERIMENTER

[v, HDRUK @3 4ok

Health Ciata Reseanch UK

Each stage requires the specific role to used. If the same person is given all roles, then to do anything malicious
they will have to consciously change their role for each stage. The full audit metadata inherent in the platform
will mean this will be identified and action can be taken.

2.3.3. Facilities

The Snowflake platform offers two different types of account: 1) Enterprise and 2) Business Critical. I1f 15027001
or HIPPA standards need to be met then the account is created with the Business Critical type, which has
additional and necessary controls and security facilities to support this.

Snowflake also comes with extensive metadata capture which is transparent and available in a standard format
across all databases. This means that all logins, table access, sql statements run etc is timestamp recorded and
exposed to SQL just as other data would be. So, querying of this metadata will allow the development of
algorithms to identify and report activity that is deemed “risky”.

Snowflake also offers on-platform running of python and java routines. This enables more advanced data
processing algorithms to be deployed connecting other facilities and approaches not native to SQL. These have
been used to bring all the metadata from all the information tables together in one place and for this to be kept
for longer than the snowflake “out-of-the-box” holding time (normally 365 days). As such all the audit and
compliance metadata can be assured into a repository to help with Research Data Management (RDM) and
similar activities.

2.4. Snowflake Data Tools

The TRE platform is designed to have the same set of specific facilities for each account type.

2.4.1. ENTITY Accounts

For the ENTITY Account type there is always:

A database called <<Account Name>>_DB. This is where the loaded data resides in tables and where the
processed data would also sit. This is the database that would have shares made from it to other accounts.

A database called METADATA_DB. This is an administrative database and not accessible by any of the users of the
account. It is used by system resources to maintain a full copy of all the native snowflake metadata on usage and
object information. This is the base source of the data that feeds the master Organisation wide equivalent
database that supports Reporting.

To process any data in the TRE a compute facility is needed. Each role has its own. These compute tools are not

needing to be known by the users, they are automatically connected by the platform. However, if remote tools

are used then the connectors often require the specification of the compute “warehouse” to be used. These are
named as

DATA LOADER: <<ACCOUNT_NAME>> XS _DL_WH
DATA PROCESSOR: <<ACCOUNT_NAME>> XS_DP _WH
DATA SHARER: <<ACCOUNT_NAME>> XS DS _WH

| 10

uowrr HDRUK @S aor

Health Ciata Reseanch UK

ACCOUNTABLE_PERSON <<ACCOUNT_NAME>> XS _AP_WH

2.4.2. COLLABORATION Accounts

For every share made to the Collaboration an INSHARE database is required. This INSHARE database will be used,
by the DATA CURATOR role holding person, to provide access to the shared data. It acts a little like a transparent
pipe enabling the COLLABORATION data to see the shared data. It is not a copy of the data, the master of which
remains in the originating ENTITY account.

The naming convention for these INSHARE databases is: <<ACCOUNT_NAME>>_INSHARE _DB

These IN_SHARE databases are not accessible to the EXPERIMENTER role, only the DATA_CURATOR. There is then
a further two databases:

A science database called <<ACCOUNT_NAME>>_ SCIENCE_DB. This is the database the EXPERIMENTER role
people use to develop the results of the collaboration. This database has specific SCHEMA designs, with a
separate schema for each approved experiment.

The second, called METADATA DB, performs the identical function as for ENTITY accounts, bringing together a full
historical record of what was done in the COLLABORATION account. Again, it is not accessible by people, and only
used by the system (although the BOARD MEMBER role can access it).

Again, there are compute “warehouses” for each of the three roles:

DATA CURATOR: <<ACCOUNT_NAME>> XS _DC_ WH
EXPERIMENTER : <<ACCOUNT_NAME>>_XS_EX_WH
BOARD MEMBER : <<ACCOUNT_NAME>> XS_BM_WH

2.5. Naming Conventions

In order to match certain data up strict adherence to naming conventions will be needed. This is because some of
the “joins” desired are not explicitly possible within the systems Snowflake.

For a SubAccount called <<ACCOUNT_NAME>> the objects are labelled in Table 1.

Type of NAME Description

Object

Database: <<ACCOUNT_NAME>>_INSHARE _DB For INSHARES form other accounts involved in the
collaboration. This is only relevant for COLLABORATION
accounts

Database: <<ACCOUNT_NAME>>_SCIENCE _DB The Database within which all Science analysis is

completed and results stored.

Database <<ACCOUNT_NAME>>_DB The database used by the ENTITY to land their loaded
data, process this into an transformed form, and this is
the database that is the source of the data to be
“Shared” or “Replicated” to the collaboration account
involved.

| 11

[o, HDRUK @ aor

Health [iata Researth LK

Database METADATA_DB This holds the Metadata curated for the account
Compute <<ACCOUNT_NAME>>_XS _<<2 letter The two letter roles are
(Warehouses) role> _WH DL: Data Loader (Entity Account)

DP: Data processor (Entity Account)

DS: Data Sharer (Entity Account)

AP: Accountable Person (Entity Account)
DC: Data Curator (Collaboration Account)
EX: Experimenter (Collaboration Account)
BM: Board member (Collaboration Account)

For the experimenter roles the specific EXPERIMENT
<<ACCOUNT_NAME>>_<<EXPT name will be added to the end.
NAME>> XS _EX_WH

The WH refers to Warehouse

The XS signifies Extra -Small and is the initial default size
of the compute on start-up.

Compute METADATA_WH The Metadata Compute that is used to curate the
(Warehouses) metadata tasks. No specific RM - uses ACCOUNT_RM
CORE_WH CORE_WH does the object creation and manage the

internal systems activity (uses ACCOUNT_RM)

Resource Monitor | <<ACCOUNT_NAME>>_ XS <<2 letter The resource Monitor associate with the COMPUTE
role>> RM resources for the role. The two-alpha shorthand for the
roles are the same as those used for the Compute
objects.

<<ACCOUNT_NAME>>_ <<EXPT
NAME>> XS _EX_RM RM stands for Resource Monitor

Resource Monitor | <<ACCOUNT_NAME>>_ACCOUNT _RM | The Resource Monitor associated with the ACCOUNT
overall (including all compute and storage).

Table 1 Naming Convention for different Snowflake objects

The key is to ensure transparency to the user and to enable derivation code, using named objects, to relate them
to ROLES and therefore People who have access to them. By aligning all the objects names with the roles more
control is provided.

Additional naming conventions, within the processes that move data from the different parts of the system eco-
system (Service Now, AWS flows, Snowflake, GITHUB etc), also helps to ensure that the readability and
traceability is maximised.

2.6. Audit and Compliance Data

2.6.1. Metadata

As already discussed, the TRE platform provides a transparent full set of usage and information metadata. These
are all brought together for each account within a METADATA_ DB and then collected at the platform level in
copies within the ORG_ADMIN_DB. The refresh Schedule for the METADATA (both at Account level and
ORG_ADMIN level) sets the latency of the data. A similar co-ordinated refresh schedule will be needed at the

| 12

[v, HDRUK @ aoru

Health Ciata Reseanch UK

reporting end to ensure the latest “real time” facts are being used. At present a 1 hr refresh at METADATA level is
used and a 2 hr Refresh at PowerBI.

The overarching process for the report creation is shown in Figure 1. The Org Admin account holds all METADATA
from all the individual accounts across the Snowflake platform. Views are created in that database to present the
objects shown in Figure . These Views are “copied” into the powerBi world to replicate the equivalent data model
as shown. The permissions table uses the Microsoft UserPrincipalName() — obtained from the identity
management stage and the Azure Active Directory, see section XXX (identity) - to filter the data to just those
required by that person based on the roles they have been granted to have. The screens have filter tools which on
selection act as filters. The charts and visuals are themselves active filters allowing “click” selection filtering.

 Snowflake/PowerBl .
= REPORTING TOOL _‘:Ei;rJCEAECDUHE * | ORG_ADMIN_ACCNT
;rritzl;“ ﬁ!;ﬁ:::: | /Select * from Accounts VIEW: Accounts |
? Dllr\l'.l.pllt d |."J VIEW: Users J:
F-3 name) : Impaort Query . o
i \ L
n-.g._-,—.b?:f '5_!."||."|!'[o (TR TEETLTTIRE WIEV Permissions J

Srowflake
Reporting refresh schedule .@ ‘E} MAetadata refresh 45}
schodula

Figure 1.6.1.1: Top-level components and flows for Reporting Audit and Compliance

These separate information and usage metadata tables have been used to provide an audit and compliance data
model, see Figure . It shows Billing information in yellow and usage information is green. Data objects are shown
in Grey and cover Columns in Tables in Schemas in Databases. In addition, in grey, are all the users, their login
and the SQL they instructed the platform to run (be it through remote tools or native on the platform).

In Blue are tables that are additions to the native Snowflake facts. A set of people is derived from the combined
users, the set of accounts is held, and the budgetary information entered in the configuration and setup phase
(and any in life changes) is held. The platform also offers the ability to TAG data - see Tagging Data (shown in red
in Figure 2.6.1.2).

! Refresh rates dictate costs as each refresh involves compute and storage

| 13

[ocees, HDRUK @S aru

Health Ciata Reseanch UK

T T ECTRETT U nmy EECEETS

Figure 2.6.1.2: Metadata model of the Platform usage and information data

2.6.2. Data Flows

To facilitate the collection of the metadata to support reporting and to record who did what when and what
objects existed in the TRE accounts, two additional roles are enabled. These are not accessible to users and are
used by the system.

The roles are:

a) ACCOUNT_REPORTER
b) ORG_DATA_CURATOR

The ACCOUNT REPORTER role is used to access the METADATA_DB in each account. It has read, but not write,
privileges on all the Information and Usage metadata collected there for the account (ENTITY or
COLLABORATION).

The ORG_DATA_CURATOR role is used by a central system platform account (The ORG_ADMIN_ACCOUNT) to
access the METADATA_DB through shares or replications to it.

The computing associated with collecting and curating this key metadata is done using a hidden system compute
“warehouse”. The costs of this activity are covered by a low level % “tax” on the credit budgets provided in the
agreement.

| 14

[o, HDRUK @ aor

Health Ciata Reseanch UK

2.7. Reporting

In normal operation a TRE will not see the usage information except through a standard cloud-based web
reporting tool. At present this is implemented within PowerBl. No account will be needed for PowerBI but the
costs associated with providing a licence through the Crick may be charged back.

This single reporting tool that implements a Row Level Security model, offers access to audit and compliance
information. Only people with ACCOUNTABLE PERSON or BOARD MEMBER roles will see a set of reporting tool
interfaces that help with monitoring activity and discharging audit and compliance roles outlined in the legal
collaboration agreement, as well as good governance methods.

This tool is to be found at this URL: https://app.powerbi.com/groups/d7b42544-803b-4db3-99d5-
a32f89d7e440/reports/a655e6a7-1151-40b2-94fc-d6b7a1a59d20/ReportSection02cc206c8cebceb6b82dd

The areas provided are:

1) What any individual in a collaboration organisation can see: Based on the account the person is
responsible for they will see the users approved and the roles and platform components they have access
to.

2) Whoisinvolved in a collaboration: What roles people have, what logins have been made? Who has
logged in when, how many times have they failed, how did they login?

3) Usage levels: What usage has been made of the compute and storage facilities. What the storage
capacity is by table name and database?

4) What money has been spent: How much cost has been incurred?

Additional reports can be provided as they are developed and will be provided through the same application /
tool.

The data model within the reporting tool is shown in Figure 2.7.1.

Eomavectinn b

—{ Data Model for Reporting Tool

L whepen @ e . - 2]
(] o
a 3 - =
v - .n
1] .
. e - = o
) 0
08 o ;
- . E A ﬂ
-] o) :]
. ' m 0
(2]

Figure 2.7.1: Data model for reporting

| 15

2.8. Tagging Data

FQ v, HDRUK @ aoru

Health Ciata Reseanch UK

The underlying Snowflake technology supporting the TRE platform offers tagging of data objects at a variety of
levels. See this knowledge article: https://docs.snowflake.com/en/user-guide/object-tagging.html

However, a set of reserved tags have been defined for within the platform developed, see Table 2.8.1.

Mame of TAG

Personal Identidier
Personal Data
Dutput

IFput

Target Outcame
Target Predictor
Expairnent?
Mod_Tasi_Val
Used_in_Modol
Diagnosts
Gane_nams
AszayTypo
Lavel of Sanstivity
Cansent Field

Sensitive Data
Senditive Data
Source of Data
Source of Data
Exparirnent
Expesirnent
Exparirnint
Expesimont
Experiment
Schnce
Sclance
Scinco
Senithvity Data

Sersitivity Data

Column
Column
Table
Tabila
Calurmn
Column
Cohimn
Takda

Calummn

Calummn

Anything that refers toa mdeadual (but not spatial address| even § pseudonymised or anonymised.
Infio about them - spatial Address / health facts f 1P address etc

The tables created as parl of the experimentation. Probably including the tabhes shared to Coll account
The tables loaded intoan Entity Account - prab incuding the anes by Data Processor rale

The Tigdds representing the Dut come designated varisbles

The fields being svestigated for mfluence over the outcome variables

The axperimarnt labal [use the exparimant rame ar 1D I possibia)

Not sure this is posstble to separate out sets (1 not In a view or table) for Madal [Test / Validatian

YN and or the Maodsl mame fn which it was used

Table 2.8.1: Tagging architecture for TRE platform - reserved models to be applied by participating entities

The application of tags can be done within native Snowflake SQL or through the use of commands passed by

functions.

| 16

E :Il:{dRI:g::::ttrun HDRUK t‘:}.’ﬂ ADR'

Health Ciata Reseanch UK

3. Section 3: ServiceNow Processes

3.1. ServiceNow Portal

The Crick uses a custom ServiceNow Portal to direct users to the relevant forms that they need to carry out admin
functions for their collaboration. These include:

Create Consortium

Add Entities

Create Budgets

Add Users to Collaboration account
Add Users to Entity accounts
Modify Users

Add Experiment

Add Warehouse

Archive Request

LN WN R

r‘f‘a aorc HDRUK Eﬁ s '

Hoalth Data Research Uk

Snowflake request portal

ﬂ Tolmtaralinn wnd scoayn mansgean D Archisng

it = £ &
&+ o+ A =

& x

Figure 3.1.1: The Service Now Portal Homepage

| 17

[o, HDRUK @B aory

Health Ciata Reseanch UK

Creating a TRE

Users fills out ServiceNow portal form with their consortium details and attaches any agreement
documentation.

ServiceNow creates a record on the consortium table (x_tfci_snowflake_consortium) and a collaboration
account record on the account table (x_tfci_snowflake_account_records) and a budget record on the
budget table (x_tfci_snowflake_budget)

The details will be checked by the snowflake administrator and approved.

Once approved ServiceNow will then run a Flow to take the details from the account ticket and create a
JSON file with all the configuration details.

The JSON file is then uploaded to the Amazon S3 bucket (tre-setup-account-prod) See Section 4.3.1

ServiceNow
. Portal form

ServiceMow creates records

¥ Y
; ServiceNow

ServiceNow :

Manual 2 Approved ~ Collaboration

—= Consortium ———1
approval Account
Record

Record

ServiceNow Flow

to create JSON ServiceNow Flow
File for + uploads JSON to

collaboration 53 Bucket
account

Figure 3.2.1: Service Now — The ‘Create TRE’ form and flow for the form.

| 18

3.3. Add Consortium Entities

UK Research
and Innovation

HDRUK

Health Ciata Reseanch UK

o .
-4 ADR |

1. User fills out a ServiceNow Portal form They can add up to six LABs, six STP’s and 4 external partners. If
they need more then the form can be filled out again.

2. On the form they can specify if the account will use anu Personal data that conforms to 1SO27001 or

HIPAA

3. AServiceNow Flow then turns each account into a separate account record and connects it to the

consortium record selected on the form.

4. When the accounts are approved on the record a ServiceNow flow creates individual JSON files with all

the configuration details.

5. A ServiceNow flow then uploads these files to the Amazon S3 Bucket (tre-setup-account-prod). See

Section 4.3.3
ServiceNo
W
Portal form
ServiceNow Flow
T X .
LAB l . TP | EX[_EI'I"I&' ¥
] I AL Act
4 T
e g 4] | N SIP e | '€ External |
Ach | Ac A
| rd LAB + . Te ap | . e External
Al . Aci At
e LAB 4 re STP o | & External
AE,. Ac Account
re LAB 4 re STP | record
At Ac
e LAB re STP
Account Account
record record

Figure 3.3.1:

Service Now — Creation of accounts for TRE.

Manual
Approval

ServiceNow Flow
to create 1SON
File for entity
subaccounts

v

ServiceNow Flow
uploads ISON to
53 Bucket

| 19

HE

3.4. Add Users (Collaboration and Entity)

ucreewen HDRUK @8 aor

Health Ciata Reseanch UK

There are 2 separate forms for adding users to Collaboration accounts or entity accounts. The only difference is

the Roles that can be chosen.

1. The user chooses Consortium and Subaccount from the dropdown list. If adding users to the collaboration

account, they only select the Consortium.

2. Using the pop-up section of the form they can add users and choose specific roles. If the user has a Crick
email, then it automatically selects OKTA enabled so they can sign in with their Single Sign On details.

3. AServiceNow Flow then creates a user record (x_tfci_snowflake_user_records)

4. A confirmation email will be sent to the user to check they are real and need to be added.

5. When the user replies to the confirmation email it will be recorded in the record.

6. User account is then approved.

7. Once approved a ServiceNow flow creates a JSON file and uploads it to an Amazon S3 Bucket (tre-setup-

user-prod) (See Section 4.3.5)

ServiceNow

Portal form email

Confirmation

to user

ServiceNow

User Record

Manual
Approval

ServiceNow Flow
to create JSON
File for Users

¥

ServiceNow Flow
uploads JSON to
53 Bucket

Figure 3.4.1: Service Now — Creation of new users for TRE

| 20

3.5.

Eﬂ ucremewen HDRUK % ADR

Health Ciata Reseanch UK

Add Experiment

User selects Consortium ID and Sub Account and budget record from the drop-down lists.
User enters experiment name, description, start and end dates then submits.

Experiment record is created in ServiceNow.

Experiment is then approved.

A ServiceNow flow then creates a JSON file and uploads it to an Amazon S3 Bucket. (tre-setup-
experiment-prod) (See Section 4.3.4)

ServiceNow
Portal form
Y
= Manual
ServiceNow Approval
Experiment
Record ,
v

ServiceNow Flow
to create 1SON
File for
Experiments

ServiceNow Flow
uploads JSON to
53 Bucket

Figure 3.5.1: Service Now — Creation of new experiments in collaboration account for TRE.

| 21

3.6.

Create Budgets

User selects Consortium ID and Sub Account from the drop down lists and enters project/grant code.

UK Research
and Innovation

HDRUK

Health Ciata Reseanch UK

Choosing the various options on the form the form will calculate the cost and amount of credits for each

user role, collaboration account and entity account

This then creates a ServiceNow record in the budgets table (x_tfci_snowflake_budget) and connects it to

the subaccount record and the consortium record.

Data is pulled from the budget record into the JSON files to create accounts and set-up users. See Section

4.3.2

Calculations and splits.

Inputs:

Total Budget

Number of months for project

Percentage split for Collaboration account
Percentage split for Entity Accounts
Percentage split for Collaboration Roles
Percentage split for Entity Roles

Outputs:

Cost per month

Cost per month for Collaboration account
Cost per month for Entity Accounts

Cost per month for Board Member role
Cost per month for Data loader role

Cost per month for Data Curator role

Cost per month for Data Sharer role

Cost per month for Data Processor role
Cost per month for Accountable person role
Cost per month for Experimenter role

ServiceNow
Portal form

ServiceNow
Budget
Record

| 22

3.7. ServiceNow records view

[wrever., HDRUK

Health Ciata Reseanch UK

Six main tables are used for storing the records in ServiceNow.

-
v ADR

1. Consortium Records — Stores details of the TRE consortium, contact details, any legal agreements can be
attached to the record. This acts as the master record for the TRE and links to all the tables below.

2. Account Records — Details of the entity and collaboration accounts. Linked to the consortium record

3. Budget Records — Budget records for each entity and collaboration account. Linked to the consortium and

account records

4. User Records — User details for each account including roles. Linked to the account and consortium

records.

5. Experiment Records — Details of the experiments, linked to account and consortium records

6. Warehouse Records — Details of the Warehouses, linked to account and consortium records.

3.7.1. Consortium Records

Fields Description

Number The ServiceNow record number

Created Date the record was created

Created by Who created the record

Working Title The title of the consortium, script turns it

to capitals and turns spaces into
underscores

Collaboration description

Discription of the collaboration

Sensitive Data

ISO27001 Will any sensitive data be used that is
classed as 1SO27001
HIPAA Will any sensitive data be used that is

classed as HIPAA

Details of Sensitive Data

Details of sensitive data

Users

Consortium Participant’s Lead

Name of the consortium lead

Leads email

Their email

Consortium Agreement

Consortium agreement signed

Name of the person that signed the
agreement

Start date

End Date

Hosting details

Hosting location of upload account

| 23

HDRUK

Health Ciata Reseanch UK

UK Research
and Innovation

v
~4% ADR |

Hosting location of collaboration account

Financial Information

Funding expected

Core funding / Grant / Mix

Funding comments

Fees budget

Metadata and admin charge permonth

Entity budget

Overall budget for Entity accounts

Collaboration budget

Overall budget for collaboration account

Invoicing Information

Address

Adress to send invoice to

Via

Email to send invoice to

With a copy to

Quoting reference

Any other information

Archive

Archive requested

Checkbox is true if requested

Archive date

Automatic or manual

Archiving process

Name of user

User who will perform the archiving

Full path to location of data

Username

To access archive

Password

To access archive

To be archived

All or specific

Items to be archived.

List specific items to be archive if above is
Specific

| confirm no meta data will be archived

True or false

Signed

Signature (francis crick)

Details of person who has signed the legal
agreement at the Crick

Name

Title

Date

Signature (Consortium)

Details of the person who has signed the
legal agreement on behalf of the
consortium

Approved

Approved

Yes or no

Approved by

Name of Snowflake admin

Approved date

| 24

3.7.2. Account records

HDRUK

Health Ciata Reseanch UK

UK Research
and Innovation

-
Y43 ADRL

Fields

Description

Active

True or false

Consortium ID

Reference to the Consortium record

Name of Body

Name of the account

URL The snowflake url

Type Type of account. (Collaboration, Lab, STP,
External)

Domain Domain of external entities

Region AWS region of account

ISO27001 Any sensitive data being used of type
1SO27001

HIPAA Any sensitive data being used of type
HIPAA

Approved

Data Sharing only account

Only data sharing rolls can be assigned

Archive

Archive requested

Checkbox is true if requested

Archive date

Automatic or manual

Archiving process

Name of user

User who will perform the archiving

Full path to location of data

Username

To access archive

Password

To access archive

To be archived

All or specific

Items to be archived.

List specific items to be archive if above is
Specific

| confirm no meta data will be archived

True or false

3.7.3. Budget Records

Fields

Descriptions

Consortium ID

Reference to consortium record

Sub account

Reference to Account record

Number ServiceNow number of the budget record
Project Code Internal project code
Grant Code External grant code

Overall budget

Overall budget for the account

Contract period

How long in months the contract is for

Value per month

Notify percent

The percentage at which the account will
notify the user that their credit is nearly up

Collaboration / Entity split

| 25

[y v, HDRUK

Health Ciata Reseanch UK

v
~4% ADR

Percentage for entity account

Value for entity account

Credits for entity account

Percentage for collaboration account

Value for collaboration account

Credits for collaboration account

Roles

Data loader percent

% of budget for data loader role

Data loader value

Value per month for data loader role

Credits for data loader

Credits per month for data loader role

Data Processor percent

Data processor value

Credits for data loader

Data sharer percent

Data sharer value

Credits for data sharer

Data curator percent

Data curator value

Credits for data curator

Experimenter percent

Experimenter value

Credits for experimenter

Board member percent

Default is 5%

Board member value

Credits for the board member

Accountable person percent

Accountable person value

Credits for the accountable person

3.7.4. User records

Fields Description

Consortium ID Reference to consortium record
Subaccount Reference to account record

Okta enabled SSO enabled for user login

Role

User Users email

Active True or false, when approved will trigger

the json upload flow

Created date

Firstname

Lastname

LOGIN

Login name for SSO

| 26

3.7.5. Warehouse records

UK Research H DR{J K
and Innovation
Haalth Data Researth UK

v
~4% ADR

Fields Description
Active True or false
Warehouse The warehouse name

Consortium ID

Reference to the consortium record

Name of Body

Reference to the account record

Archive

Archive requested

Checkbox is true if requested

Archive date

Automatic or manual

Archiving process

Name of user

User who will perform the archiving

Full path to location of data

Username

To access archive

Password

To access archive

To be archived

All or specific

Items to be archived.

List specific items to be archive if above is
Specific

| confirm no meta data will be archived

True or false

3.7.6. Experiment record
Field Description
Number ServiceNow record number
Active True or false

Consortium Id

Reference to the consortium record

Experiment name

Experiment description

Budget account

Reference to the budget account record

Experimenter percent

Percentage of the budget for the
experimenter

Experimenter value

Data curator percent

Data curator value

Start date

End date

Notify percent

Approved

True or false

Approval date

Approved by

Archive

Archive requested

Checkbox is true if requested

Archive date

Automatic or manual

Archiving process

| 27

[v, HDRUK

Health Ciata Reseanch UK

4N
I‘l

Name of user

User who will perform the archiving

Full path to location of data

Username

To access archive

Password

To access archive

To be archived

All or specific

Items to be archived.

List specific items to be archive if above is
Specific

| confirm no meta data will be archived

True or false

* ADR

| 28

Eﬂ ucremewen HDRUK % ADR

Health Ciata Reseanch UK

4. Section 4: TRE Off-Snowflake Processing

4.1. Overview

The ‘TRE Off-Snowflake Processing’ refers to the workflows that build the cloud infrastructure for the TRE using a
cloud platform called Snowflake. For full details about Snowflake, please refer to their online documentation
here: https://www.snowflake.com/en/

The aim is to create an environment that can automatically create specific snowflake accounts used for data
sharing between external and internal users. The data needs to be protected and transferred safely. The
snowflake environment allows to use of custom roles to control data access. For more information on types of
snowflake account. (See Section 2.3)

Figure 4.1.1 below, shows the high-level diagram for the setup to create the process to build snowflake objects.
As in the diagram, the process moves from ServiceNow, AWS and finally to snowflake.

Py F
of b Bl alc,
servicenow adWs % snowfiake
=z o . »
S &
G Approval Kl 5] W ’
E | —v—=> | = g)\ 4 '
‘E . = % 53 AWS Lambda Sﬂ_l s
-_ JSON . i =
E j — outpat| 2 Scripts
g — X o
& {3}
Portal Stored e~
Forms data r”
'.'...':.r:.:'.-!'_m

GItHuh Tempiate

Figure 4.1.1: Overview off-snowflake processing in the cloud. From ServiceNow to AWS to Snowflake.

A form in ServiceNow is populated by a user and approved - for more detail, see section 3. The output from the
form is dropped into a pre-built S3 bucket in AWS. This triggers a Lambda function; the event is controlled by
logging on to the S3 bucket. This lambda function uses a bespoke tool “Flows”, built by our technical partner
Infinite Lambda. This could also be custom built using Terraform, or manually copied and run in the snowflake
client. To build the SQL script to run and create compute, storage and users necessary for the account to run.

| 29

E El:{dﬂl‘:\gnﬁ:::tr?un H DRU K } ADR'

Health Ciata Reseanch UK

Other tools could be used for processing the GitHub queries, one being GitHub Actions. However, the reason we
selected AWS Lambda was the physical size of the run: GitHub Actions was tested and found to be too slow for
the needs of the Crick instance. AWS Lambda functions gave us more flexibility to split up all the parts of the code
and run individually. AWS Secret Manager could be replaced with other options such as Azure Vault or CELO.

4.2. Crick Snowflake Organisation

EﬁckSn@wHaRECHgamxaUGH

&

ncc-:u.fm
CRG_ADMIN_ DB table

AL LA \' Liwr ADMIN
.I Lol

infos u _..1.up [

] mage data WS

:IZ|'I-= I'.|.1._' 1
subaCCoL I

ACCHNT_ADMIM_DBs
G3image data WS

EXTERNAL BODY -

subaccount N A

READER
subaccount

Figure 4.2.1: Overview off-snowflake processing in the cloud. From ServiceNow to AWS to Snowflake.

Figure 4.2.1 allows us to see our design of the organisation, showing the links between different types of accounts
and the roles available on the account. The Crick Snowflake Organisation has specific rules and naming
conventions to control security and to have uniformity across the TRE. See Section 2 for more information. From
Figure 4.2.1, there are 4 different types of accounts: COLLABORATION, LAB, STP, and EXTERNAL BODY. ‘LAB’ and
‘STP’ are specific to the organisational structure of the Crick — these could easily be renamed to match a different
naming convention at a given institution, eg ‘'GROUP’ and ‘FACILITY’. For each of these accounts there are specific
roles. (See 2.4.1 for more detail on entity accounts and 2.4.2 for collaboration accounts). With every account we
will create at least 2 databases one to capture metadata called 'METADATA_DB', which we use for auditing
purposes, and a database to carry out the work that needs to be done as part of the collaboration.

In the Diagram above the metadata is visible as a small database on the left of the subaccount.

While the ORG account that creates all the subaccount cannot see any data within the subaccounts, we actively
will share metadata to allow us to audit the subaccounts with minimal intrusion. This also allows us to build rich
reports on activities on the subaccounts ensuring we identify any red flags as soon as possible

For more details see section 2.6.1 on Metadata Processing.

| 30

e HDRUK @3 aor

Health Ciata Reseanch UK

The ORG subaccount on the right-hand side in Figure 12 is the master organisation account. This is used to create
new subaccounts within the organisation.

The TRE environment build is kicked off by json files being dropped in pre-made S3 Buckets from ServiceNow (See
Section3). There is an AWS Spoke built into ServiceNow, this allows easy connection to the S3 Buckets and
subsequently the lambda function build.

4.3. AWS Setup

The AWS console contains S3 buckets and lambda functions. These are created and remade through Terraform.;
For the crick solution we have a dev and prod account to allow changes. All S3 buckets and lambda functions are
tested before being rebuilt by the GitHub code. This also a thorough check to make sure our objects are built
correctly in AWS. As mentioned above, there are other cloud providers which can be used for this.

Github link: ;FrancisCrickinstitute/TRE_off _snowflake_computing/terraform/

4.3.1. JSON output from ServiceNow

The json files that are received from service now are a basic form of:

{
VARIABLE_NAME1: “VARIABLE_VALUE1”,

VARIABLE_NAME2: “VARIABLE_VALUE2”,

The JSON files holds various information needed to create the SQL queries to build different objects of the TRE.
More about the specific files for each lambda function in the next section.

4.3.2. Lambda Function Triggers
All lambda functions are stored on the GitHub within a code repository.;
There are 20 Lambda functions:

Create_account
Setup_account
Setup_user
Setup_experiment

PwnNpE

| 31

E :Il:{dﬂlrnﬁ:::ttrun HDRUK '..1, "‘J.-ﬂADR

Health Ciata Reseanch UK

5. Setup_okta_integration

6. Setup_okta_user

7. Create_external_stage

8. Setup_metadata

9. Alter_metadata

10. Update_snowflake_account_records

11. Update_snowflake_budget

12. Update_snowflake_consortium

13. Update_snowflake_experiment

14. Update_snowflake_experiment

15. Update_snowflake_user_records

16. Update_svn_account_records

17. Update_svn_experiment_records

18. Update_svn_objects_records

19. Update_svn_user_records

20. Update_svn_warehouse_records
Lambda function 1- 7 are used to set up the TRE. 8-9 are for the metadata. 10-15 are used to update snowflake
metadata tables from ServiceNow. 16-20 are used to update ServiceNow metadata tables from snowflake.

There are various JSON files depending on the forms filled in:

1) Setup Accounts including separate forms for a collaboration or entity.
2) Add Experiment

3) Create/Modify User

4) Archive Process.

dWws

CREATE ACCOUNT == {REATE ADMIN ACCOLRT

!-r"-.J!_.-.n Ty i o€ SN }'-.v,‘_rfi,r]:_.;,-::
snowiak i) - - AN

k-gelup o] SETUP_METADAT, &
Zcoeuant &

LIFOATE UM KL

=]

LHREATE_USER —s CREATE USER™S PASSWORD /.
sricrwr sk CFT Ii-_ METADATA = D ——
vick 49 E& \

2 LIPOATE_ACCOUNT _RECORL L—?-QL
Scripts
?ll_l EXPERIMENT
KA
» SETL _.I.'_:-I_,_ T

B

JFDAT OUNT RECORD

K

n

Figure 4.3.2.1: File push into an S3 bucket trigger lambda function on the right.
Github links:

1 FrancisCrickinstitute/TRE_off snowflake computing/lambda/

| 32

Eﬂ e HDRUK .cﬁ?unn !

Health Ciata Reseanch UK

4.3.3. Create and Setup Accounts

When a user once to create a new account within the crick organisation, a form is filled in see SN docs. The form
is dropped in S3 bucket called snowflake-crick-setup-account. This will trigger create_account lambda function;.
(See Figure 13) The JSON form will need to have the following variables to complete:

This includes information about the Account:
CONSORTIUM_ID
ACCOUNT_NAME
REGION
MONTHLY
NOTIFY_PERCENT
TYPE
START_TIMESTAMP
END_TIMESTAMP
CONTRACT_PERIOD

ACCOUNTABLE_PERSON

CREDITS_BUDGET_ACCOUNT
CREDITS_SUBACCOUNT_DATA_SHARER
CREDITS_SUBACCOUNT_DATA_LOADER
CREDITS_SUBACCOUNT_DATA_PROCESSOR

CREDITS_SUBACCOUNT_ACCOUNTABLE_PERSON

Both collaboration & entity accounts

Just for entity account

| 33

[o, HDRUK @ aor

Health Ciata Reseanch UK

4.3.3.1. Create Account

Based on the json input mentioned above from ServiceNow (See Section 3.7.2), this lambda function generates
template 03_setup accounts and using bespoke “Infinite Lambda Flows Tool” creates a new account in the
Snowflake organisation account based on 03_setup_account templates.

The password for the ACCOUNTADMIN_MAIN is generated, saved to AWS secrets and sent to snowflake-
notification-admin@crick.ac.uk.

Provisioning the URL for the new account can take 5-10 minutes and then will trigger setup account lambda
function

After create_account lambda function has run. This will trigger setup_account.

GitHub Code
1FrancisCrickinstitute/TRE_off_snowflake_computing/lambda/create_account/lambda.py
2FrancisCrickinstitute/TRE_off _snowflake_computing/templates/01_create_account.j2

sFrancisCrickinstitute/TRE_off_snowflake_computing/templates/02 setup_account.j2

4.3.3.2. Setup Account

Setup account will create the ACCOUNTADMIN_MAIN and stores the password in AWS Secret Manager. There is
a secondary account ACCOUNTADMIN_BACKUP for an extra layer of processing if the main account is locked out.
Both passwords are also stored in Azure Vault. The lambda function will trigger either 04_entity _subaccount.j2;
or 06_collaboration_subaccount.jsons; depending on the type of account being setup.

Type of subaccount Template used.

STP

External 04_entity_subaccount.j2;
Lab

Collaboration 06_collaboration_subaccount.j23

To connect to the subaccount, the process uses the ACCOUNTADMIN_MAIN, created in the previous step. The
password would be taken from the AWS secret manager. It uses the flow built in tool to create the desired yml
file from the j2 template. The YML file will contain sql code that can run directly in the newly created subaccount
to create new objects.

GitHub Code
1 FrancisCrickinstitute/TRE_off _snowflake _computing/lambda/setup _account/lambda.py
2 FrancisCrickinstitute/TRE_off snowflake _computing/templates/04_entity _subaccount.j2

sFrancisCrickinstitute/TRE_off_snowflake_computing/templates/06_collaboration_subaccount.j2

| 34

uowrr HDRUK @S aor

Health Ciata Reseanch UK

The SQL commands will create the following objects depending on the type of account. For more info on the

naming conventions and objects. See section 2.5. The below resources are for an account name
“ACCOUNT_NAME”

STP, LAB & ENTITY

1)

2)

3)

4)

5)
6)
7)

8)
9)

Resource Monitors for roles
a. <<ACCOUNT_NAME>>_ACCOUNT_RM — Account Level Resource Monitor
b. <<ACCOUNT_NAME>> XS DS _RM — Data Sharer Resource Monitor
Cc. <<ACCOUNT_NAME>>_XS_DP_RM — Data Processor Resource Monitor
d. <<ACCOUNT_NAME>>_XS DL _RM — Data Loader Resource Monitor
e. <<ACCOUNT_NAME>>_XS_AP_RM — Accountable Person Resource Monitor
2 Databases
a. <<ACCOUNT_NAME>>_ DB
b. METADATA_DB
1 schema for each database
a. <<ACCOUNT_NAME>> SCH for <<ACCOUNT_NAME>> DB
b. METADATA_SCH for METADATA DB
Warehouse
a. CORE_WH
b. <<ACCOUNT_NAME>> XS DL WH —Warehouse for Data Loader
c. <<ACCOUNT_NAME>> XS DP_WH — Warehouse for Data Processor
d. <<ACCOUNT_NAME>> XS DS WH — Warehouse for Data Sharer
e. <<ACCOUNT_NAME>> XS AP_WH — Warehouse for Accountable Person
Internal Stage to store data
Grant access to metadata tables etc. to for real time updates
Create roles for subaccount
a. ROLE_ACCOUNT_REPORTER

b. ROLE_METADATA_CURATOR
c. ROLE_ORG_DATA_CURATOR
d. ROLE_DATA_SHARER

e. ROLE_DATA_LOADER

f. ROLE_DATA_PROCESSOR

g. ROLE_ACCOUNTABLE_PERSON

Create share privileges
Grant roles to top level roles see Figure 14 below to see inherited roles for collaboration

| 35

[v, HDRUK @ aoruc

Health Ciata Reseanch UK

Role Hiararcty «ENTITY =g
.-.-"'-.--. _.-"
e '//" e =i

-~ .
. B
—~ o i

ROLE_[[NAME_OF _BODYY}_ METADATA_ DA ROLE_[{NAME_OF_BODY]]_METADATA_SC
_RD H_Rw

ACCOUNT _ADMIN

I FOLE ACCOUNTABLE PERSON “D"E-“““"'E'UFH“;EI"H-MW'D‘“'E
m \ ROLE_DATA_SHARER o —_— - ROLE_{[MAME OF _BODY]). SCH_RO

T
— -

IR ROLE_DATA_LOADER ;
—— ROLE_[{MAME_OF_BODYT}_SCH_RW

LUSER_# kN -
AT ROLE_DATA._PROCESSOR o

ROLE_{[MAME_OF_BODY}]_DB._RW

KEY

IN_ BLULT ROILES CUSTOM USER ROLES CLUSTOM SYSTEM ROLES

Figure 14: Role Hierarchy for entity

ROLE_[IMAME_DF_BODY]}_DB_RO 19

See Section 2 and HLD for more information on Roles & Naming convention. The below resources are for an
account name “ACCOUNT_NAME"

COLLABORATION

1) Resource Monitors
a. <<ACCOUNT_NAME>> ACCOUNT_RM
b. <<ACCOUNT_NAME>> XS_BM_RM
c. <<ACCOUNT_NAME>> XS_DC_RM
2) 2 Databases
a. <<ACCOUNT_NAME>> SCIENCE_DB
b. METADATA_ DB
3) 1 schema for METADATA DB
a. METADATA_SCH for metadata DB

4) Warehouse

a. CORE_WH
b. METADATA_WH
c. MAIN_WH

d. <<ACCOUNT_NAME>> XS BM_WH
e. <<ACCOUNT_NAME>> XS DC_WH
5) Grant access to metadata tables etc. to for real time updates
6) Create roles for subaccount
a. ROLE_ACCOUNT_REPORTER

| 36

[ez, HDRUK @ aoruc

Health Ciata Reseanch UK

ROLE_METADATA_CURATOR
ROLE_DATA_CURATOR
ROLE_ORG_DATA_CURATOR
ROLE_BOARD_MEMBER
ROLE_ACCOUNT_REPORTER
g. ROLE_SHARE_ADMIN
7) Create share privileges
a. Assigns ROLE_ORG_DATA_CURATOR with create share privileges
8) Grant roles to top level roles see Figure 6 below to see inherited roles for collaboration

"0 o0 T

Role Hierarchy - COLLABORATION

oo oo ann B rocsmom an B8

i
. ROLE_ACCOUNT_REFORTER
':.'\.:\ -\H‘-«.
W ROLE_BOARD_MEMBER |
I"-.I -.__.x \
% \

\ '-x'%‘

RO

ADCOLUNT _ADMIN

5 | e

L

ROLE_DATA_CURATOR

ROLE_SHARE_ADMIN

KEY
BN BUILT ROLES CLISTOM USER ROLES

Figure 15: Role Hierarchy for collaboration

See Section 2 for more information on Roles & Naming convention.

4.3.4. New Experiment for Collaboration

The input values required are:

ACCOUNT_NAME

NAME_OF_EXPERIMENT

CONTRACT_PERIOD

| 37

b,
[v, HDRUK @52 Aok
START_TIMESTAMP
END_TIMESTAMP
NOTIFY_PERCENT

CREDITS_COLLAB_EXPERIMENTER

Once the new experiment json output from ServiceNow (see Section 3.5) is dropped in the S3 bucket
setup_new_experiment. It will trigger the lambda function setup_experiment.; This will create a new experiment
in a pre-chosen collaboration account, based on the input from ServiceNow. The template 12_new_experiments;
is transformed using flows applies to run SQL code in pre-selected Snowflake account.

For the experiment the objects created are :

1. Resource Monitor for experimenter for experiment -
<<ACCOUNT_NAME>>_<<NAME_OF_EXPERIMENT>>_XS_EX_RM

2. Warehouse for experimenter for experiment
<<ACCOUNT_NAME>>_<<NAME_OF_EXPERIMENT>>_XS_EX_WH

3. Schema for experiment in <<ACCOUNT_NAME>>_ SCIENCE_DB
<<NAME_OF_EXPERIMENT>>_SCH

4. Create Role for experiment
ROLE_EXPERIMENTER_{{NAME_OF_EXPERIMENT}}

5. Grant Role ROLE_<<NAME_OF_EXPERIMENT>>_SCH_RW to
ROLE_EXPERIMENTER_<<NAME_OF_EXPERIMENT>> & ROLE_DATA_CURATOR

6. Grant access to metadata tables etc. to for real time updates

Github code:

1 FrancisCrickInstitute/TRE_off _snowflake_computing/lambda/setup_experiment/lambda.py

2FrancisCrickinstitute/TRE_off snowflake _computing/templates/12_new_experiment.j2

4.3.5. Create User

Once the user json from ServiceNow dropped in the S3 bucket tre_setup_user, it will trigger the lambda function
setup_user;

The input values required are:

ACTION

ACCOUNT_NAME

LASTNAME

FIRSTNAME

CONSORTIUM_ID

ROLE_NAME

| 38

s, HDRUK @8% Aok
EMAIL
OKTA_ENABLED
LOGIN
REGION

There is a field in this file called ACTION. This can be one of 4 options; ADD_USER, DELETE_USER, ADD_ROLE, or
REMOVE_ROLE. Based on action type, it will generate either 08_new_users or 09_new_role.

Action TYPE Template generated Tasks used

ADD_USER 08 new_users; Create_users.j2 4

DELETE_USER 08_new_users; Drop_users.j2s

ADD_ROLE 09_new_roles Create_roles.j2 ¢

REMOVE_ROLE 09_new_roles Revoke_roles.j2 ;
ADD_USER:

Generates a new user in the chosen subaccount using the field <<ACCOUNT_NAME>> using the template

08 __new_users;. It will generate a temporary password for the new user within the lambda function. Login into
the entity/collaboration using the ACCOUNTADMIN_MAIN password. It will create a new user, with the details
given in the input file. The only difference for each account is whether it is OKTA_ENABLED. This will be true for all
crick employees (See Section 4.4). It sends an email to the user with login details and the account link. In a
separate email, it sends the temporary password, this needs to be changed within a certain time frame.

DELETE_USER:

Generates using the template 08 _new_users; in comparison to the above one it reverts the code and removes
user. It sends and email to the “accountable person/board member” with username, and account that this has
been actioned on.

ADD_ROLE:

Generates using template 09_new_roles for existing users within the chosen subaccount. It will grant an
additional role specified in the file. Roles are restricted base on the type of account (see Petes doc). It sends and
email to “accountable person/board member” with role, username, and account that this has been actioned on.

REMOVE_ROLE:

Generates using 09_new_roles for existing users within the chosen subaccount. In comparison to the above one it
reverts the code and removes the role from the user. An email is sent to “accountable person/board member”
with role, username, and account that this has been actioned on.

| 39

[v, HDRUK @8 s
Github code
1FrancisCrickinstitute/TRE_off _snowflake_computing/lambda/create_user/lambda.py
2FrancisCrickinstitute/TRE_off snowflake_computing/templates/08_new_users.j2
sFrancisCrickinstitute/TRE_off snowflake_computing/templates/09_new_role.j2
4FrancisCrickinstitute/TRE_off _snowflake_computing/tasks/09_users/create_user.j2
sFrancisCrickinstitute/TRE_off snowflake_computing/tasks/09_users/drop_user.j2
s FrancisCrickinstitute/TRE_off _snowflake computing/tasks/08custom_roles/revoke_role.j2

sFrancisCrickInstitute/TRE_off _snowflake computing/tasks/08 custom_roles /create_roles.j2

4.4. Okta integration with Snowflake

1] 3] SNOWFLAKE

Figure 16: Lambda function flow for OKTA integration

1. After successful setup of Lab, STP or Collaboration account, lambda function Setup Okta Integration is
triggered

2. Lambda creates new Okta SAML application, new Okta group, and assign the app to the group

3. Lambda queries saml2 issuer, SSO URL and x509 certificate from the new Okta app

4. Using saml2 issuer, SSO URL and x509 certificate, lambda creates Security integration in the Snowflake
account

5. After successful setup of new user (or removal of existing user) in Snowflake account, lambda function Setup
okta user is triggered

6. Lambda adds (or removes) user from the okta group, thus enabling (disabling) user's access to the
corresponding Snowflake account via Okta

GitHub Code
1 FrancisCrickinstitute/TRE_off _snowflake_computing/lambda/setup_okta_integration/lambda.py

2FrancisCrickinstitute/TRE_off snowflake_computing/templates/setup_okta_user.j2

| 40

B v, HDRUK @ o

Health Ciata Reseanch UK

4.5. Metadata Processing
There are 3 types of Snowflake accounts we use for metadata processing:

Organisation account: This account is the main organisation account, as mentioned above this is the account to
create all accounts. It contains organisation_usage data in SNOWFLAKE database.

Snowflake documentation: https://docs.snowflake.com/en/sqgl-reference/organization-usage.html

Organisation admin: This account contains the reporting account with databases named METADATA_DB and
{ACCOUNT_NAME}_IN_SHARE_DB. The inshare database is replicated into the account from the main account. It
contains Views for audit reporting (visualized in Power Bl) and custom tables from Service Now.

The URL for current Crick platform:

https://wijlipih-org _admin.snowflakecomputing.com/

Sub-accounts: These are collaborations, entities accounts created within a consortium. They are environment for
data analysis tools and scientific research. These accounts are mentioned above.

4.5.1. Data collected and details
SUB_ACCOUNTS ORG_ADMIN_ACCOUNT

<MName of body 1= SHARE_IN DB

=MName of body 2> SHARE IN DB

(I

Data sharing in same region

—

<Name of body 100> _SHARE_IN DB Data replica across regions

=Name of body n=_SHARE_IN DB

@ @

Figure 4.5.1: Overall Architecture

4.5.2. Account usage tables
Here is data we can see for each SNOWFLAKE account in SNOWFLAKE . ACCOUNT USAGE.

Snowflake documentation: https://docs.snowflake.com/en/sql-reference/account-usage.html

| 41

FQ s, HDRUK @ aor.

Health Ciata Reseanch UK

With a set period (60 minutes for current platform), a SNOWFLAKE TASK is run to trigger stored procedure. This
capUnesneW(mangesﬁonmSNOWFLAKE.ACCOUNT_USAGEtoMETADATA_DB.METADATA_SCHineachacanmt
and marked with current time on field UPDATED AT

1 - name: ACCESS HISTORY

2 - name: AUTOMATIC CLUSTERING_ HISTORY
3 - name: COMPLETE TASK GRAPHS

4 - name: COPY HISTORY

5 - name: DATABASES

6 - name: DATABASE STORAGE USAGE HISTORY
7 - name: DATA TRANSFER HISTORY

8 - name: GRANTS TO ROLES

9 - name: GRANTS TO_ USERS

10 - name: LOAD HISTORY

11 - name: LOGIN_ HISTORY

12 - name: METERING DAILY HISTORY

13 - name: METERING HISTORY

14 - name: PIPE USAGE HISTORY

15 - name: REPLICATION USAGE HISTORY
16 - name: ROLES

17 - name: SCHEMATA

18 - name: STAGES

19 - name: STAGE STORAGE USAGE HISTORY
20 - name: TAGS

21 - name: TAG REFERENCES

22 - name: USERS

23 - name: STORAGE USAGE

24 - name: QUERY HISTORY

25 - name: WAREHOUSE METERING HISTORY
26 - name: SESSIONS

27 - name: TASK HISTORY

28 - name: COLUMNS

29 - name: TABLES

| 42

B v, HDRUK @ o

Health Ciata Reseanch UK

4.5.3. Information schemas table

Here is data we can see for each SNOWFLAKE account in SNOWFLAKE . INFORMATION SCHEMA.

Snowflake Documentation: https://docs.snowflake.com/en/sql-reference/info-schema.html

With a set period (60 minutes for current platform), a SNOWFLAKE TASK is run to trigger stored procedure to
CapUWeneW(hangeSﬁ0n1SNOWFLAKE.INFORMATION_SCHEMAtONETADATA_DB.METADATA_SCHineach
account and marked with current time on field UPDATED AT

1 - name: USAGE PRIVILEGES

2 - name: TABLE STORAGE METRICS
3 - name: PROCEDURES

4 - name: OBJECT PRIVILEGES

5 - name: TABLE PRIVILEGES

6 - name: REPLICATION DATABASES

3. Show commands tables:
Here is data we can see for each SNOWFLAKE account by running SQL query SHOW {Objects}

Snowflake Documentation: https://docs.snowflake.com/en/sql-reference/sql/show.html

With a set period (60 minutes for current platform), a SNOWFLAKE TASK is run to trigger stored procedure to
capture new change to METADATA DB.METADATA SCH in each account and marked with current time on field
UPDATED_ AT . Since SHOW command only has live data, we have another field IS DELETED to differentiate
history.

1 - name: SHARES

2 key identifier: name

3 - name: WAREHOUSES

4 key identifier: name

5 - name: RESOURCE MONITORS
6 key identifier: name

4. Live tables:

These are custom tables created for service now update. All these data is sent back to Service Now as reference
for creating new forms.

EXPERIMENT LIVE

This table is created during set up account as empty. An INSERT SQL script is trigger when a new experiment is
created.

ORGANIZATION ACCOUNT MASTERSHARE DB.ORG SCH.UPDATE ACCOUNT RECORD

| 43

e HDRUK @3 aor

Health Ciata Reseanch UK

This table is used to keep track live consortium_id with account_locator, account_name. Once an account is
created, a stored procedure in organization account is trigger.

ORGANIZATION ACCOUNTS LIVE

This table shared to org admin account from organization accounts. By running SHOW ORGANZATION
ACCOUNTS with ORGADMIN role, we have data of existing accounts being used in platform. We also know when
it is created, url, locator ...

GRANTS TO USER LIVE

This table is managed by a javascript stored procedure. It has live data of USERS and ROLES in a sub account. Once
there is a user or role modified, the lambda function is trigger to update this table.

WAREHOUSES LIVE

Keep track on current warehouses in platform.

4.5.4. Organization data sharing:

A special replica database from organization account to include organization usage data. For current platform
database and schema is: ORGANI ZAT ION ACCOUNT MASTERSHARE DB.ORG SCH

4.5.5. Viewsin ORG_ADMIN_DB
Metadata views having convention: {objects type} VIEW.Forexample: GRANTS TO USERS LIVE

The live tables are updated straight away. All other SNOWFLAKE account usage or information schema tables
have expected 0-120 minutes delay on update.

There is stored procedure to automatically update a view with + UNION ALL SELECT * FROM
{new _sub_account} SHARE IN DB when an account is created.

4.5.6. ADMIN_SCH.X_TFCI_SNOWFLAKE_ tables

Custom data from Service Now on active CONSORTIUM, USERS, EXPERIMENTS, WAREHOUSES, BUDGET,
ACCOUNTS.

4.6. Update ServiceNow Records and Snowflake Metadata Tables

To allow consistency throughout the process, there is an APl in place to connect the metadata for the TRE in the
two locations, the data is stored. ServiceNow generates some of the information and so does Snowflake during
the process. After, any of the lambda function have been run it will update the metadata records to have an up-
to-date view on all accounts, users, warehouse, experiments & tables within the system. See Figure ?? below.

The APl is built into ServiceNow. The API pushes data to snowflake ORG_ADMIN account and then pull data from
ServiceNow. The tables mentioned in Section 3.7 are some of the data that is moved.

| 44

>

* — AW (’
O
E *,

HDRUK

Health Ciata Reseanch UK

2
"4 ADR

UK Research
and Innovation

servicenow

Figure 4.6.1: ServiceNow to Snowflake integration using AP

4.7. Archive Process

Once the collaboration project ends, there needs to be an efficient and safe way to remove the data from the
account, and return it to the relevant data owners, as specified in the research collaboration agreement. If we
were to suspend and delete the account, all data would be lost. The alternative is to continue paying for the

storage of the data indefinitely.

To initiate an archive process, the user is required to fill in an archive form in the ServiceNow Portal. Once this has
been completed, there is a field which states when the archive needs to happen and what objects are required to
be taken off the platform. The following steps will then be triggered, after approval by accountable person.

- There is an email 5 days before the archive sent out to accountable person informing all work needs to be
stopped on the account. (Email sent from service now).
- Another email is sent out 2 days before archive informing the process will begin the following day. The file
is then dropped in an S3 bucket named tre_archive. This will trigger lambda function archive;. The lambda
function builds a file from 14_archive.j2; using the input variables from the json.

This lambda function will check if any queries are running on the account (manual or automatic).

If no, it will perform the following tasks:

Create an archive role

Create internal stage for the data to place into

Create an archive resource monitor with the allocation of credits based on the size of the archive.

ouhkwnpeE

Create a warehouse (compute) for the role archive.
Assign a user or service account to the ROLE_ARCHIVE
Suspend all warehouses so no queries can be run

| 45

e HDRUK @3 aor

Health Ciata Reseanch UK

If yes:

- The process cannot prepare the account for archive and will send out an email to accountable person &
user running query, stating “Archive cannot complete while queries are running”. The process will need to
be triggered again.

After this has completed, we are ready to archive data. There will be two choices, manual or automatic.

- Manual - the administrator would assign the role_archive to a specific user to take the data from an
internal stage to an external stage using snowflake in built tools or one of their internal tools.

- Automatic — the archive process would take all data from the tables chosen in the archive form and move
into an internal stage ready for the user to take off.

Once the data has been removed, we can either resume the warehouses if the account is still going to be used, or
the account is finished with, we will suspend all compute resources after archive has completed. Finally, the
admin will submit a request to Snowflake to remove the account from the organisation.

All metadata for each account is not archived and kept within the Crick admin account.
GitHub Links
1 FrancisCrickinstitute/TRE_off _snowflake _computing/lambda/archive/lambda.py

2FrancisCrickinstitute/TRE_off snowflake _computing/templates/14_archive.j2

| 46

[o, HDRUK @ aor

Health Ciata Reseanch UK

5. Section 5: Snowflake Single Sign-On (SSO)

5.1. Overview

Snowflake TRE users are authenticated via Crick’s Okta* SSO solution if they are internal staff. External TRE
members are authenticated directly in Snowflake.

Single Sign-On provisioning in Snowflake TRE sub accounts is automated. Data which has been stored from the
ServiceNow form for a new TRE is used to create an Okta SAML application, Okta groups to manage assignment
and configure the Snowflake sub account to work with the Okta SAML SSO application. The Okta APl is used to
create the Okta elements see Section 4.4 for more detail and code. External users are created locally in
Snowflake and authenticated locally by Snowflake.

5.2. Implementation

5.2.1. Okta Application and Group naming conventions

5.2.1.1. Application Naming

For the app, we use “Snowflake” and then a hyphen and then the project name, so for example the LAB TRE
would be “Snowflake — LAB”.

5.2.1.2. Group Naming

For the group naming we have used the format snowflake_ TRE_NAME, so LAB for example, we have the group
snowflake_LAB.

5.3. Process

1) TRE data from ServiceNow form used to create:
a. Okta SAML App
b. Okta Group for assignment
c. Snowflake TRE sub account SSO configuration
2) Crick users added to Okta group for SSO access to TRE
3) External users added to Snowflake TRE and access managed by Snowflake directly

| 47

ucremewen HDRUK ‘%ﬁp‘gum

Health Ciata Reseanch UK diiren shasg

5.3.1. Automated object creation diagram

Ciats Irdtance

5.3.2. Overview SSO Flow Diagram

Crich user accesses sub sccount UL Snowitakn Project Sub Account

"ﬁ-“ Externs| uier srceddss sub acecunt LITL

Extarnal user |5

W user is 3 Crick user authenticated in

{@crickac.uk) Okta Prod Sroveflake locally
Authenticates user
&
& &
g &
3 <
F = & 4 a9
&
Crick Liser 25' irg External Usar

Data Requiremanti:
Crick Llser
1] User 10 be crested in Snawliake, with emall matching crick émall address
and username matching crick userPrincipaliiame [UPK]
2] To enable 550, sub account UAL and friendly name needs to be providad
for a script to create the 550 Integration in Okta and Snovdlake,
3] Groapsin Okis sre created 1o assRgn apps 1o wsers 1o llow gocess to sub
account via script.

External Liser
1) Uiser i created locally in Snowdftake via scrfpt and suthenticated by
Snoviflake localiy,

*Where Okta is noted, this could be any Identity Provider, such as AzureAD for example.

| 48

uowrr HDRUK @S aor

Health Ciata Reseanch UK

6. Section 6: Reporting Single Sign-On (SSO) and assignment

6.1. Overview

Reports from Snowflake TREs are visualised through PowerBI. PowerBl is already available to Crick staff and
authenticated via federated SSO through Okta*. Users External to the Crick can access PowerBI via Microsoft’s
federated authentication, which allows other organisations using Office 365 or consumer Microsoft accounts to
authenticate to our PowerBI instance.

6.2. Implementation

To manage access to the report element of Snowflake we have created two groups in AzureAD, one for internal
staff and one for external staff. These groups do not manage data access within the report, but purely if the
report can be accessed in the first place. Data level access is managed within the report itself by username.

6.2.1. Groups Created

Snowflake_PowerBl EXTERNAL_USER_Read_Only

Snowflake_PowerBl_INTERNAL_USER_Read_Only

6.3. Process

This is how a TRE user with access to a report would be provided the access:
6.3.1. Internal User

1) Internal userin TRE is allowed report access
2) Internal user is added to AzureAD Group Snowflake_PowerBI_INTERNAL_USER_Read_Only
3) Internal user is emailed link to the PowerBI Report

6.3.2. External User

1) External user in TRE is allowed report access

2) External user is invited to Crick Azure AD using their email address noted in the TRE

3) External user accepts invitation to Crick Azure AD

4) External user is added to AzureAD Group Snowflake_PowerBI_EXTERNAL_USER_Read_Only
5) External user is emailed link to the PowerBl Report

| 49

ucremewen HDRUK ‘%AD&RUK

Faalth Data Researth UK LT o P T

6.4. Reporting SSO Overview Diagram

Crick user accesses PowerBl URL* M3 PowssBl Reporting p I‘ﬂT' t thenthcatio
i 4 DR Federates authentication

If user Is a Crick user
| @erick.ae.uk) Okt Prod
Authenticates user

& External user sccesses Powerdl UR
=2
& &
F = 9 B & #Allows or Blocks Acces:
G“"-Z' £ ! Guest usern o365 tenancy
Crick Usar ,._,-f or Microsoft sccount
£
IE-unst Usar
rFo— 9
Data Requirements:
Crick Liser

1} Groups to manage reporting permissions created in Azure. 2} Crick users added to the appropriate groups. 3| Links 1o reports shared with Crick
usars via emall.
External Lser
1} Creste guest account invite in Offica 365, 3} Add guest account to relevant Azure guest acoess group. 3) Provide links to reports via emall 1o guest
BECoUnt.

*Where Okta is noted, this could be any Identity Provider, such as AzureAD for example.

| 50

[v, HDRUK @ aoru

Health Ciata Reseanch UK

7. Section 7: Loading data into vTREs - Extract, Load, Transform (ELT)
Tools

7.1. Performance Testing of ELT tools

This section provides an overview of the ways one could approach loading data into Snowflake, via a manual tool
or via an automated workflow manager, and the methods used to evaluate them.

We looked to understand performance of loading data from a set of sources, namely:

e An S3 Bucket resource (linked to Snowflake via an external stage)
e Local storage (likely via an internal stage)

The Snowflake recommended (and the method found fastest in testing) is to have a file set up in a stage (usually
compressed), and leveraging the COPY INTO command, load data from the staged file into a predefined table.

Database interface tools such DBeaver and DataGrip are also investigated here, and they make life very easy from a
user perspective. However, since they have no way to stage files in Snowflake, they instead parse the file in
question and make INSERT statements line by line (or in batches) into the table, which decreases performance very
drastically and will not work efficiently for any larger files.

Here the performance testing was done with the following:
e A CSV datafile of raw size 2.2GB and 0.2GB after compression (GZIP). About 30 million rows

e An AWS Bucket in ‘eu-west-2’ region, set up as an external stage in the snowflake instance
e An XS (extra small) snowflake compute warehouse

7.2. Loading files from a persistent storage source (via an internal stage):

Local files would usually be loaded into an internal snowflake stage before copying across to a table. If using

Snowflake’s “snowsql“ CLI tool, the file is automatically converted to a GZIP format compressed file and loaded up

into an internal stage (either “named” or “user” type).
1PUT 'file://C:/[filepath]' @~/ PARALLEL = 20;

If a table has been set up with the correct column names as the csv file header, one can perform a COPY INTO
command to load this data into the table.

1COPY INTO PAFCSV_PERFORMANCETEST FROM @~/staged/PAF.csv.gz;

In testing, the PUT command took about 5 minutes (compression and upload) and the loading into the table
from the internally staged compressed file took about 1.5 mins.

| 51

[o, HDRUK @ aor

Health Ciata Reseanch UK

7.3. Loading files from a cloud file store (via an external stage):

We may come across a case where a team already has data in a cloud data store (e.g. Amazon S3, Google GCP,
Azure Blob). In this case the external resource may be added to the snowflake instance via an external stage. The
loading of files was done first from local storage to an S3 bucket that had been provisioned seperately. The upload
of this file (compressed 0.2GB) took about 2.5 minutes. After this point the process is the same as for the internal
stage, a COPY INTO command to get the file data in S3 into a snowflake table.

In testing, the COPY INTO command from externally staged compressed file took about 1.5 mins.
7.4. Loading files from Database clients (via bulk insert statements):

For self-service database client applications such as DBeaver (and DataGrip) , the approach they take to load data is
slightly different. They do the heavy lifting to load data into the database, rather than go by a stage and letting
snowflake parse the data file and copy the data into the table. Here the application reads some amount of rows at
a time and inserts them via one SnowSQL transaction. This will naturally cause higher load times for large files.
Because the loading takes a longer amount of time, this means the compute warehouse will need to be running for
a lot longer and therefore use more credits so this is something to bare in mind. A credit breakdown across these
methods will be summarised at the end of this document.

7.5. Manual Self-Serve Data Loading options

This section outlines the tools available for loading into a Snowflake account. Data is typically recommended to be
loaded into Snowflake via stages. Stages are file repositories that act as a staging area for the contents of files to
be moved to a Snowflake table. There exist both external and internal stages.

7.5.1. What is an external stage?

External stages are ones in which a Cloud file storage resource (outside of the Snowflake instance, hence
external) is provisioned and deployed, and used as a Stage in Snowflake. Files can be loaded into this resource
using the appropriate tool for that cloud provider. Currently supported Cloud file stores are AWS S3 Buckets,
Azure Blob, and Google Cloud Platform files. Note that the service/user that loads data into the external resource
will not necessarily be the same person that can access the stage in Snowflake. A user (or the infrastructure code
that will set up the components) will be able to set up the named external stage in Snowflake (given they know
the access keys for said storage account) at the schema level (although this may be opened to the rest of the
database). Once this connection to the file store is made, the owner of that stage and any access they share to
other users will be able to list the files currently inside the stage and copy that data across into tables. Note here
that a user that has access to an external stage will not be able to PUT files into the stage, this needs to be done
externally as part of the resource’s native management tools.

7.5.2. What is an internal stage?

Internal stages are cloud file stores that are Snowflake managed. It is not a cloud resource that is referenceable or
configurable outside of Snowflake and is an option that has limited configuration and deployment options. The
advantage here is that Snowflake users can create named stages and transfer files from local file systems to these
stages. These resources are fluid and very much operate under a pay as you go model as part of Snowflake’s own
billing. Once these files are put into the stage, they can be COPYed into a table

| 52

[v, HDRUK @3 4ok

Health Ciata Reseanch UK

7.5.3. How may a user load data into a table via an internal stage?

By default, all users in Snowflake have what is referred to as a “user stage”. This is a type of internal stage to be
used by the user and only by the user and cannot be granted access to another user within the Snowflake
instance. Being a default, no set up is needed to provision it and access is out of the box. If the stage is needing to
be referenced by other users and be recognised in the design model as a database object, the user will need to
set up a “named stage”.

The Snowflake out of the box supported and official way to load data from a local file system to an internal stage

is via “SnowSQL” and the command line interface (CLI) tool . SnowSQL (CLI Client) — Snowflake

Documentation , downloadable from the Snowflake website. Once installed and configured, the PUT command
allows the user to reference a file path and load that file (and compress it in the process) into an internal stage
(be it named or user).

For example, loading a file into my personal user stage:

@~/staged:|

PUTing a file into my personal user stage
Or alternatively you can create a named stage to be used by other users
1CREATE STAGE PAF_STG;

2PUT 'file://C:/Users/palamin/Documents/PAF-FLL-UK-CSV/PAF-FLL-ABDA-CSV.csv' @PAF_STG;

NIKDLADS . PALANIDASPCRICH . AC. UHRTEST _WHRDAREUK_ELT . PUTCORMAND _TESTING> BPAF_5TG;
i

name | last_modified

paf_ F-FLL-ABDA-CSV.csv.gz

¥
|
|
|
|

b
|
¥

paf_ f File.txt.gz | us 1 : Gaal 3 6 1 Mar 2
|1
¥

The contents of stages can be displayed with the LIST command

Then the COPY command may be used in SnowSQL to copy the data across into a pre-built table. For example
loading data from our @PAF_STG named stage into a pre built table. Notes this does not need to be done in the
CLI and may be done via the in-browser snowflake worksheet interface.

1>COPY INTO POSTCODE_PAF_TEST FROM @PAF_STG FILE_FORMAT=(VALIDATE_UTF8 = TRUE);

The table to land the data must be created beforehand for this to work, with the same field names and types pre-
configured. This of course requires knowledge on the user’s part, not only to understand Snowflake’s data types
and table creation SQL syntax, but also to know ahead of time what the data structure of the file is. This can be
difficult for a non-technical individual to load their data into snowflake.

We can still leverage these methods outlined above, but what we ideally need is a way to streamline this process:
A graphical user interface (GUI) for the tool so that anyone can load data that needs to do so.

A “schema-on-read” approach to loading data into the tables. What is meant here is a way to automatically create
the table with the correct names and data types inferred by the contents of the file without needing to be
investigated by individuals (who may not feel comfortable doing so).

| 53

ucresearcn [{IJRY K @83 ApR
and Innovation \ Rant
Haalth Data Researth LK

7.5.4. How may a user load data into a table via an external stage?

The external stage approach is different use case to the internal stage. It is more applicable to a set of people who
already have a prebuilt cloud-based file storage resource at their disposal or wish to have one. Take for example
an external body that already has an AWS S3 bucket that stores genomics data. All that would be required is for
the user to set up an external stage referencing the location of the bucket to copy data across to tables, without
the need to replicate data across different storage resources.

Another use case would be the need for a variety of users, teams, and services to load data into the data
repository that are not necessarily part of the Snowflake instance identity management.

For AWS S3, a file can be loaded into the bucket in a variety of ways. An automated data flow or via their own
AWS CLI tool. In testing we loaded using the CLI tool.

To set up the bucket (or other supported) cloud-based storage as an external stage, you can do so graphically in
the browser interface portal or via SQL commands.

Create Stage

amuon|S3 R AL "

Figure 7.5.4.1: Stage Creation Options for Snowflake Managed (internal) and Cloud resources (external)

Create Stage

Mame* TESTEUCKE THAME
Schama Nama PUTCOMMAND_TESTING
UAL*® s3:ftestbucketiocation
AWS Fey 0 SO0
ANE Cacrat Koy

R ——
Efcryplicn Masiar Key

Eamment

Figure 7.5.4.2: Graphical external stage creation

| 54

e HDRUK @3 aor

Health Ciata Reseanch UK

1--Or Create the stage via SQL which gives you more control of parameters
2CREATE STAGE "DAREUK_ELT"."PUTCOMMAND_TESTING".TESTBUCKETNAME
3URL = "s3://testbucketlocation’

4CREDENTIALS = (AWS_KEY_ID = "XXXXXXXXXXXXXX' AWS_SECRET_KEY = "aktsctictickackn),

Once the external stage is set up there is no difference to how you would use an internal stage, using COPY to copy
data into the table from a file.

7.5.5. Are there any pre-built software options for loading data graphically?

For many users, the use of the CLI tool and its setup is too technical and fiddly to use. People should have the
ability to load data into their Snowflake instance, without knowledge of stages, SnowSQL syntax, data types etc.
For this reason we have found a few graphical tools that fulfil this purpose, namely DBeaver and JetBrain’s
DataGrip.

DBeaver is an open-source and free to use multi-platform database tool (designed mainly for developers but can
be used by anyone with the right guidance), that provide an easy-to-use graphical interface for loading data into
databases/lakes/warehouses etc. This includes Snowflake out of the box (will manage the drivers necessary with
minimal fiddling).

DataGrip is an example of another such database tool, however this required a paid for licence and does not offer
any additional functionality to DBeaver. It was found in testing that the free DBeaver community edition licence
provided more than enough functionality for this use case.

Once the connection to the appropriate Snowflake subaccount, database, warehouse and schema are configured,
a graphical process will guide the user through loading data. The tool reads the raw file (e.g. csv, JSON etc.) and
interprets the schema from the contents. This will allow the user to either accept the format, or to adjust
according to custom data type and restrictions. Once this is done, the tool builds that table, without needing
knowledge of the underlying SQL (although this is visible should you wish to inspect it), with the data types
needed, and then loads that data straight from file to table. This method significantly reduces complexity for the
user by both inferring data file schema through a graphical interface, and bypassing the requirement to set up
and load into stages as an intermediary step.

| 55

G roiee

fie Falll lwigiie Seuamh

tviihﬁ T8 = O

WL Frkirm

UK Research
and Innovation

HDRUK

Health Data Researdh LUK

Dalalieiew Windink syl

T oral g T BTEIDE = WA T @E T 0=

flmWM"*v.h:‘E_ {3 Coenection “TEST D" sosfiguation - O x
(e ¢ ot o oigon name s Commestion sattings % snowflake
1 4 w aaber e bl et m!frll.ﬂ'.' Hh
(SR] " o sl
- B 0,08 -
1 INFORMATION STHEMA Coneeclién st | jyn. Gnowilake Drier properties 554 By
= i MO.5CH St i Crpelen
T Ixhiey Ol ifurrication), MOSE |m}_|_ﬂmmnmurlrguhgm e [aaa
:"""‘" [— Dutshasa: | TEST 0B
® Dialg Frpes M".n.,... Wl
W rauC o nd tirrmcuty. | Swme |
[:m‘lmm Cheke gen Tes? O beon b bl warskanmetscherma lal b the s
W Aeattvprbicalans
Ayrthenticatioer Clatuliaye matfos =
Unerarme: | SYE AIMCATER
B Prajed - Ganenl « L B Purisorond. | sasnsssannns | Save pasmoe ooty
i, e WERS e i
! "mmu‘:"’_ Mutheniicatur, | srilake
| * W v S can e waniathes o ormnechon panmmeten
" . [oE T T Ecfit i Setiinga
it o
ot Commcion I R
L
Figure 7.5.5.1: Setting up the DBeaver connection manager
) DBeaver 22.1.0 - ITO_DB
File Edit Mavigate Search S0L Editor Database Window Help
$v|vee|Osal v Rtk T v @ Aug |® v STESTD

E Database Mavigator * B Projects
L

=B Emope ®

= g
]

! & Properties & ER Diagram

Enter @ part of object name here | ¥

» * lpading - sglserver-datafeam-datowarehouse-p &wmm "l'l'ﬂ__Dﬁ £

= @ TEST DB - wilipih-ito.snowflakecomputing com:

~ = [T0_DB gchemas Schema Name
5 it INFORMATION_SCHEMA, ~ [{INFORMATION SC...
v [[TO_SCH |ETO SCH
R E PUBLIC
. my T Create New Table
. mp © ViewTables F4 |
. W 2 Browse from here
> BpuB | e ;
& View Diagram
*

l' H

»
0 Copy Cirl+C
_ = Paste Chrl+V

WPcoject=Gent & patrash F5
MName Datasource
+ B Bookmarks
* @ ER Diagrams
» [Scripts

Figure 7.5.5.2: Import data into a schema/database of choice in DBeaver

¢

ADRUK

P aledrei s Buisg

| 56

B v, HDRUK @ o

Health Ciata Reseanch UK

Once the connection is set up all that is left is to right click onto the database schema the user wishes to load data
into, which brings you onto the next screen.

Tahles mapping

Mg taldwn arad cofurmm tsele

fnars] eI Kapizing Yo
= FAF o L ivuln

™ Bririmm

e Ll Coae Tasguic T Mapping Rasskam
PR HTIGER
= SL 5l ORGAMNISATHHIRAME VAR H&RI50
a3 Al DEPARTRENTRAME VARCHARIIO)
Beomacks A POEDN WVARCHAR 501
N Chagrams 1. BUSOMGMAME VASCHARIM) e
T S SUBBUILDINGHAKE VARTHAR 5
BURLOINGHUMBER MTEGER ra
HAE . THORCAUIGHRARE VAR HARI5
ki T AL STREET VARCHARIS
4. DOUSLEDEPERDENTLOCAUITY VARCHARIEN
U DEFERDENTLOCALITY VARCHAR|S0) e
5. POSTTOWN VASCHER (5] e
Al POETOODE VARCHARIS0) =
1. POSTOODETYPD WVARCHAR |
AL DM VARCHARISH)
HASL. FUDEGARERATIONFLAG VASCHAR(5) e
Voilesduhia VARCHANL. POSTOODENOSPACE VARCHARISN
[oe] co
« Bark r|:] Cancsl

Figure 7.5.5.3: Import Wizard: Data schema is inferred from the local file which can be adjusted as needed

As seen in the image above, the interface allows you to select a data file of your choice, and then assuming it is
clean, will infer the data schema (column names and appropriate data types) to create a possible table definition
(DDL) for the data to land in. As is seen here it seems to think that the format of the data is a csv file, and has
inferred that there are 4 columns and using the data contained in the scan of the file, has also assumed that the
data types. At this point, the user is free to load as is with these assumptions or adjust to other data types if they
know their data better. At this point completing the import wizard above will

1) Create the table in the snowflake schema and
2) load the data from that file into said table. You can also use this method to load into existing tables.

Another advantage of DBeaver is that it gives you another graphical tool to perform Snowflake queries on, adding
to the CLI and in-browser official services.

NOTE: Despite DBeaver’s convenience, under the hood all it is doing is committing insert statements line by line
(or in batches) from the raw file. This is fine for smaller files or if load times are not a concern, however for very
large files, it does not leverage Snowflake’s native Big Data engine to load data from a raw staged file, which
means that consequently it is painfully slow for the larger order of GB files. In addition, you get many INSERT
statements in the transaction history of snowflake as one row per row insert transaction, which could make
auditing harder in the long run.

| 57

